Reagent of the Day

Ellman's Sulfinamides (tBs)

Celine Santiago July 31, 2017

Asymmetric Synthesis of Amines

Factors affecting successful nucleophilic addition to imines

- > Steric and electronic properties of the *N*-substituent
- ➤ *N*-substituent prevents rapid imine oligomerization
- ➤ Majority of *N*-substituted imines are unstable or inconvenient to store

$\alpha\text{-deprotonation}$

$$R_{N}^{1} \xrightarrow{R^{2}} \xrightarrow{R^{4}-M} R_{N}^{1} \xrightarrow{R^{2}}$$

Possible Solutions

- Modulating the electronic properties of the N-substituent can provide stable compounds
- When reacted with basic nucleophiles, EW N-substituents are necessary to activate imines

Asymmetric Synthesis of Amines

$$R^{1}NH_{2} + OR^{2} \longrightarrow R^{1}NR^{2} \longrightarrow R^{4}-M \longrightarrow R^{1}NR^{4}$$

$$R^{1} = p\text{-tolyl (Davis), tert-butyl (Ellman)}$$

$$R^{2} = R^{4}\text{-M}$$

$$R^{1} = p\text{-tolyl (Davis), tert-butyl (Ellman)}$$

$$R^{2} = R^{4}\text{-M}$$

$$R^{2} = R^{4}\text{-M}$$

$$R^{2} = R^{4}\text{-M}$$

$$R^{4} = R^{4}\text{-M}$$

$$R^{2} = R^{4}\text{-M}$$

$$R^{3} = R^{4}\text{-M}$$

$$R^{4} = R^{4}\text{-M}$$

$$R^{2} = R^{4}\text{-M}$$

$$R^{2} = R^{4}\text{-M}$$

$$R^{3} = R^{4}\text{-M}$$

$$R^{4} = R^{4}\text{-M}$$

$$R^{2} = R^{4}\text{-M}$$

$$R^{3} = R^{4}\text{-M}$$

$$R^{4} = R^{4}\text{-M}$$

$$R^{4} = R^{4}\text{-M}$$

$$R^{2} = R^{4}\text{-M}$$

$$R^{3} = R^{4}\text{-M}$$

$$R^{4} = R^{4$$

Sulfinyl group as an ideal auxiliary

- Activates imine for nucleophilic addition
- Provides diastereofacial selectivity
- Easy to remove by treatment with mild acid

Davis' N-p-toluenesulfonyl substituent

Limitations

- > p-toluene-sulfinamide is a poorer nucleophile
- does not cleanly condense with aldehydes
- Preparation routes proceed in modest yields

Ellman's Sulfinamide

Citations of tBs and its derivatives

Advantages

- Enhances the nucleophilicity of the amine
- Minimizes competitive nucleophilic attack at sulfur
- Higher diastereofacial selectivity
- Preparation route is higher yielding; mole scale

General Reaction Scheme

Ellman, *J. Am. Chem. Soc.* **1997**, *119*, 9913. Ellman, *Acc. Chem. Res.* **2002**, *35*, 984.

Ellman, Nat. Protoc., 2013, 8, 2271.

Optimized Synthesis of tert-butanesulfinamide (tBs)

A Versatile Intermediate to Access Chiral Amines

Application to Pharmaceuticals

1.
$$t\text{-Bu}$$
 NH_2 $Ti(O\text{-}iPr)_4$, THF, $60 \, ^{\circ}\text{C}$ NH_2 NH_2